
 

 
 
 
 
 
 
 

An Agent Based Model for Simulating Herd Dynamics 
 

Beth Johnson 
johnsel@umd.edu 

 
Advisor: 

Dr. Bill Fagan 
Department of Biology 

bfagan@umd.edu 
 
 
 
 
 

Abstract 
Biology and ecology currently lack a unifying theory for movement mechanisms as well as 
population level patterns. Most methods for analyzing both movement and population patterns 
require assumptions about the type of movement or expected population patterns.  An agent 
based model, where each animal is represented as an evolutionarily trained neural network, is 
used to generate relocation data for a variety of landscapes without making assumptions about 
movement mechanisms.  This data is analyzed using spatial metrics to classify the population 
level patterns that have emerged.   



 1 

 

1 Project Background 
There are many different mechanisms that animals may use to direct movement, for example an 
animal could use sensory cues (sight, smell) to move towards a resource such as food or water.  
Movement mechanisms fall into three broad categories: non-oriented, oriented, and spatial 
memory.  Animals may use multiple mechanisms, for example, a random walk around a central 
place for part of the year followed by a migration to a new location that is guided by memory of 
landmarks. While there are various models for each of the different types of mechanisms, there is 
not a model that can accommodate all three.  Based on the spatiotemporal variability of the 
landscape, there are three population movement patterns that animals may exhibit: sedentary 
ranges, migration, and nomadism.  Sedentary range is when the population moves about a central 
place (relatively small compared to the available range for that species), migration is when a 
population follows a predictable cycle of movement between two disjoint locations, and 
nomadism is when the population moves to multiple locations in a non-predictable manner.  It is 
hypothesized that the spatial and temporal variability of resource landscapes will determine the 
most efficient movement mechanism as well as the overall population pattern, as summarized in 
Figure 1.  While there are different analysis methods for each of the possible population 
distributions, most rely on an initial assumption of the type of distribution the population is 
exhibiting [6].  
 
 

 

coarse

fine

Sp
at

ia
l H

et
er

og
en

ei
ty

 o
f R

es
ou

rc
es

Range Residency

Migration

Nomadism

non-oriented

oriented

Temporal Predictability of Resources

spatial memory

highlow

Figure 1: Hypothesized relationship between temporal 
predictability and spatial heterogeneity. For example, if the 

resources are highly predictable, spatial memory will be the most 
efficient mechanism. Based on the heterogeneity of the landscape, 
this could cause migration or range residency to occur. From [6]. 



 2 

1.1 Notation 
The following notation will be used throughout this document. 

Symbol Meaning 
𝑁 Number of animals (or agents) 
𝑅 Number of total resources on the grid 
𝑟 Length (in cells) of side of resource patch {1, 2, 4, 8} 
𝑃𝑟 Predictability of landscape {0, 25%, 50%, 75%, 100%} 

∆𝑥(𝑡!) Distance traveled in x direction from ti-1 to ti 

∆𝑦(𝑡!) Distance traveled in y direction from ti-1 to ti 
𝑃! = {𝑝!! ,𝑝!! ,…𝑝!! } Set of data points for animal i, where pi is an (x, y) location  

𝑀 Total number of time steps (number of (x,y) pairs) 
𝑆 = {𝑠!, 𝑠!,… 𝑠!} Set of distances for which to calculate the PDI 

𝜇! Global mean shift in x direction  
𝜇! Global mean shift in y direction  
𝜎 Global variance 
𝜌 Global correlation 

 

2 Approach 
There will be two parts to this project.  The first part is an implementation of an agent based 
model with evolutionarily trained neural networks to generate relocation data. The second part is 
a suite of spatial metrics that will be used to analyze the simulation or relocation data to discern 
the type of population distribution.  

2.1 Agent Based Model  
The agent based model will consist of two stages – an evolution phase and a herd movement 
phase. The movement rules (as determined by the neural network) will be the same for both 
stages. Currently, only stage one has been implemented. 

2.1.1 Details 
The following gives further details about the landscape, agents, and evolution. 

2.1.1.1 Landscape 
The landscape will consists of 64 by 64 grid of cells with reflective boundaries. Each cell has an 
integer value indicating a resource count in the cell. If an agent moves to a cell with a non-zero 
resource count, a resource is transferred to the agent (the agent’s resource count is increased by 
1, the cell’s resource count is decreased by one). The landscape is varied in two ways – patch 
size and predictability.  The patch size is defined as the size of the resource squares as they are 
placed on the landscape, as seen in Figure 2. Predictability is defined as the percentage of the 
patches that remains in the same location throughout all generations, as seen in Figure 3. The 
simulation will be run for all 20 possible combinations of patch size and predictability.  For a 
given generation, the starting landscape is the same for all individuals, but the landscape changes 
each generation according to the predictability.  For the evolution stage, the maximum resource 
count in any cell is 1 and if a cell is depleted it will remain depleted for the current agent and 
generation. For the herd movement phase, the maximum resource count in any cell will be 5 and 
once a cell is depleted, it will regrow after 5 time steps. 



 3 

 

 
 

2.1.1.2 Agents 
Each agent is represented by a fully connected feed forward artificial neural network, consisting 
of seven input variables (and a bias), three hidden nodes, and three output nodes as shown in 
Figure 4. 
 

Figure 2: Patch size. The grid on the left shows a patch size of r = 2, 
while the right shows a patch size of r = 4. Note that the total number 

of resource cells remains constant. Patch size will be{1, 2, 4, 8}. 

Figure 3: Landscape predictability. The top figure shows a landscape predictability of Pr = 0.75, 
where 6 of the 8 resource patches remain constant throughout generations. The bottom shows a 
landscape predictability of Pr = 0.5, where 4 of 8 resource patches remain constant throughout 

generations. Landscape predictability will be selected from {0, 0.25, 0.5, 0.75, 1.0}. 



 4 

 

 
This gives 33 weights connecting the nodes, and these 33 weights are representative of the 
agent’s “genes” and are integer values from [-5,5]. Initially, the weights are randomly selected 
from a uniform distribution.  The inputs to the hidden layer are scaled to [-1,1], and the values of 
the hidden nodes and output nodes are determined by the following equations.  
 

HiddenNode! =
exp Inputi×weightij!

!!!

1+ exp Inputi×weightij!
!!!

 

 

OutputNode! =
exp HiddenNodej×weightjk!

!!!

1+ exp HiddenNodej×weightjk!
!!!

 

 
Input variables are as follows and are updated after each movement step: 

1. Current value of resource counter (starts at zero) 
2. Increase in resource counter over the last eight steps (starts at zero) 
3. Search effort over the last eight steps (defined as an agent’s intention to deviate from 

current movement direction – see 2.1.2.3, starts at zero) 
4. Number of cells in surrounding eight cell neighborhood that contains a resource 
5. Current x-position 
6. Current y position 
7. Current time step 

 
Agents may move to any cell immediately adjacent and may only move one cell at any given 
time step. Agents may not stay in the same cell unless they are “trapped” by the edges of the 
landscape and other agents.  

2.1.1.3 Evolution  
Each generation, agents are randomly selected without replacement in groups of six. The agent 
with the largest value of the resource counter is chosen to reproduce.  When the agent is 
reproduced, the 33 weights (representing the genes of the agent) are copied six times to create six 

Figure 4: Agent Neural Network. There are 8 input nodes representing three different movement 
mechanisms. Modified from [5]. 



 5 

new agents.  When copying the weights, there is a 20% probability of a crossover event occulting 
and a 2% probability at each weight for a point mutation. 

2.1.2 Algorithms 
The following algorithm describes how the overall model was (stage 1) or will be (stage 2) 
implemented. For ease of reading, the landscape initialization, landscape updates, agent direction 
selection, and reproduction algorithms are separated and detailed following the main algorithm. 
 
For each execution of this overall algorithm, a patch size (r) and predictability (Pr) will be 
chosen. 
 
Stage 0 – Initialization 

1. For i = 1:140 
a. Select 33 random integers [-5, 5] to be initial weights for the neural network for 

agent i. 
2. Initialize landscape 

 
Stage 1 – Evolution 

1. For generation j = 1:5000 
a. For agent i = 1:240 

i. Place agent i in a random starting location.  
ii. For t = 1:150 

1. Determine direction to move. 
2. Move to new location. 
3. If resource exists at that location, add one to resource counter for 

agent, subtract one from resource counter for cell. 
iii. Renew landscape to state at beginning of generation. 

b. If j != 5000 
i. Create 240 new agents according to reproduction algorithm. 

 
Stage 2 – Herd Movement 

1. Choose agent from last generation with largest resource counter and create 240 copies 
with no mutation 

2. For t = 1:150 
a. For j =1:240 

i. Choose without replacement an agent to update. 
ii. If t = 1 

1. Place agent in random starting location. If agent already exists at 
that location, select a new location. 

iii. Else (t > 1) 
1. Determine direction to move. 
2. Move to new location. 
3. If resource exists at that location, add one to resource counter for 

agent, subtract one from resource counter for cell. 
4. Record agent location. 

b. If a cell was originally designated to hold a resource but has been depleted for 5 
time steps, reset cell resource count to 5. 



 6 

2.1.2.1 Landscape Initialization 
1. For i:R/r2 

a. Randomly select a location for the top left corner of patch i.  
b. If the patch does not overlap another patch or the edge of the grid. 

i. Place patch i (set the value of cells in patch i to 1 for evolution stage or 10 
for herd movement stage). 

c. Else, go to Step 1a. 
2. Select !

!!
×𝑃𝑟 patches to remain constant throughout the generations. Let C be the set of 

patches that will remain constant.  

2.1.2.2 Landscape Update  
1. Start with blank landscape. 
2. Place all patches in C. 
3. For i:# of patches not in C 

a. Randomly select a location for the top left corner of patch i.  
b. If the patch does not overlap another patch or the edge of the grid 

i. Place patch i (set the value of cells in patch i to 1 if evolution stage 
generation counter is <5000, 20 if generation counter is 5000) 

c. Else, go to Step 3a. 

2.1.2.3 Agent Direction Selection  
The selection of a movement direction of an agent proceeds according to the following 
algorithm.  If at any time a cell is unavailable due to another agent occupying that cell or due to 
cells not existing off the edge of the grid, the agent will move in a random direction selected 
from the available directions.  

1. Compute hidden layer node values and output layer node values according to 2.1.1.2. 
2. If Node 4 is [0, 1/3), use oriented movement. Set search effort to 0. 

a. If there is more than one resource in the surrounding cells, randomly select a cell 
with resource as new location. 

b. Else, if there is one resource, select that cell as new location. 
c. Else, there are no resources, randomly select cell. 

3. Else, if Node 4 is [1/3,2/3), use non-oriented movement.  
a. If Node 5 is [0,1/3), move in same direction as previous time step, set search 

effort to 0. 
b. If output layer output is [1/3,2/3), set search effort to 1 and randomly select 

between 
i. Same direction as previous time step. 

ii. 45 degrees CW from previous time step. 
iii. 45 degrees CCW from previous time step. 

c. If output layer output is [2/3,1], set search effort to 9 and randomly select 
direction. 

4. Else, Node 4 is [2/3,1], set search effort to 0 and use memory-oriented movement.  
a. If Node 5 is [0,1/8), go N. 
b. If Node 5 is [1/8,2/8) go NE. 
c. If Node 5 is [2/8, 3/8), go E. 
d. If Node 5 is [3/8, 4/8), go SE. 
e. If Node 5 is [4/8, 5/8), go S. 



 7 

f. If Node 5 is [5/8, 6/8), go SW. 
g. If Node 5 is [6/8, 7/8), go W. 
h. If Node 5 is [7/8, 8/8), go NW. 

2.1.2.4 Reproduction 
1. For i = 1:40 

a. Randomly select six agents without replacement. 
b. Find agent with largest resource counter, call this agent A. 
c. For j = 1:6 

i. For k = 1:33 
1. Choose random number [0,1] from uniform distribution. 
2. If random number is <0.02 

a. Choose integer from uniform distribution [-5,5] and set this 
value as gene k for agent j. 

3. Else, set gene k for agent j to the value of gene k for agent A. 
ii. Choose random number [0,1] from uniform distribution. 

1. If random number is <0.2 
a. Choose random integer [1,33] from uniform distribution; 

this is the start of the crossover, call it c. 
b. Choose a random agent (with replacement), call it agent B 

from previous generation. 
c. Set genes c:33 for agent j to the values of genes c:33 for 

agent B. 

2.2 Spatial Statistics 

2.2.1 Realized Mobility Index 
Realized mobility index, or RMI, describes the proportion of the annual range an animal is using.  
The range of the animal is defined as the minimum convex polygon covering all location points 
for that animal. The range of the population is defined as the minimum convex polygon covering 
all location points for all animals in the population. The RMI is simply the ratio of the area of the 
individual range to the area of the population range. An RMI is calculated for each individual in 
the population, and then averaged over the population [7]. The minimum convex polygon will be 
found using the following algorithm from Kirkpatrick and Seidel [3]. First, the upper hull will be 
determined, then the lower hull will be determined using the same method. If the left and right 
endpoints on the upper and lower hull are not the same, vertical lines can be drawn to connect 
them.  
 
Algorithm for Finding Upper Hull 
Note: in this algorithm, x(pi) represents the x value of the data point p, with index i. 

1. Initialization – Let min and max be the indices of two points in A that form the left and 
right endpoints of the upper hull of S.  

𝑥(𝑝!"#) ≤ 𝑥(𝑝!) ≤ 𝑥(𝑝!"#) 
𝑦 𝑝!"# ≥ 𝑦 𝑝!   if  𝑥 𝑝!"# = 𝑥 𝑝! , 

𝑦 𝑝!"# ≥ 𝑦 𝑝!   if  𝑥 𝑝!"# = 𝑥 𝑝!   for  𝑖 = 1,… ,𝑛 
If min = max, print min and stop. 
Let 𝑇 ∶= 𝑝!"#,𝑝!"# ∪ {𝑝 ∈ 𝑆|𝑥 𝑝!"# < 𝑥 𝑝 < 𝑥 𝑝!"# } 



 8 

2. CONNECT(min, max, T) 
 
Algorithm for CONNECT(k, m, s) 

1. Find a real number a such that 

𝑥 𝑝! ≤ 𝑎  for
𝑃
2   points  in  P  and 

𝑥 𝑝! ≥ 𝑎  for  
|𝑃|
2 points  in  P   

2. Find the “bridge” over the vertical line 𝐿 = {(𝑥,𝑦)|𝑥 = 𝑎} 
(𝑖, 𝑗) ∶= 𝐵𝑅𝐼𝐷𝐺𝐸(𝑃,𝑎) 

3. Let 𝐴!"#$ ∶= 𝑝! ∪ {𝑝 ∈ 𝑆|𝑥 𝑝 < 𝑥(𝑝!) 
Let 𝐴!"#!! ∶= 𝑝! ∪ {𝑝 ∈ 𝑆|𝑥 𝑝 > 𝑥(𝑝!) 

4. If i = k then print(i) 
5. Else CONNECT(k, i, Pleft) 
6. If j = m then print (j) 
7. Else CONNECT (j, m, Pright) 

 
Algorithm for BRIDGE(P,a) 

1. 𝐶𝐴𝑁𝐷𝐼𝐷𝐴𝑇𝐸𝑆 ∶= ∅ 
2. If |P| = 2 then return ((I,J)), where 𝑃 = {𝑝! ,𝑝!} and 𝑥(𝑝!) ≤ 𝑥(𝑝!). 
3. Choose |!|

!
 disjoint sets of size 2 from P. 

4. Determine the slopes of straight lines defined by the pairs. 
5. Determine K, the median of {𝑘(𝑝! ,𝑝!)|(𝑝! ,𝑝!) ∈ 𝑃𝐴𝐼𝑅𝑆} 
6. Let 𝑆𝑀𝐴𝐿𝐿 ∶= {(𝑝! ,𝑝!) ∈ 𝑃𝐴𝐼𝑅𝑆|𝑘 𝑝! ,𝑝! < 𝐾} 

Let 𝐸𝑄𝑈𝐴𝐿 ∶= {(𝑝! ,𝑝!) ∈ 𝑃𝐴𝐼𝑅𝑆|𝑘 𝑝! ,𝑝! = 𝐾} 
Let 𝐿𝐴𝑅𝐺𝐸 ∶= {(𝑝! ,𝑝!) ∈ 𝑃𝐴𝐼𝑅𝑆|𝑘 𝑝! ,𝑝! > 𝐾} 

7. Find the set of points A which lie on the supporting line h with slope K. 
Let MAX be the set of points 𝑝! ∈ 𝑆,  s.t.  𝑦 𝑝! − 𝐾×𝑥(𝑝!) is maximum. 
Let pk be the point in MAX with minimum x-coordinate. 
Let pm be the point in MAX with maximum x-coordinate. 

8. Determine if h contains the bridge: 
If 𝑥 𝑝! ≤ and 𝑥 𝑝! > 𝑎 then return ((k,m)). 

9. H contains only points to the left of or on L: 
If 𝑥(𝑝!) ≤ 𝑎 then 
For all (𝑝! ,𝑝!) ∈ 𝐿𝐴𝑅𝐺𝐸 ∪ 𝐸𝑄𝑈𝐴𝐿, insert pj into CANDIDATES 
For all (𝑝! ,𝑝!) ∈ 𝑆𝑀𝐴𝐿𝐿 insert pi and pj into CANDIDATES 

10. H contains points only to the right of L: 
If 𝑥 𝑝! > 𝑎 then 
For all (𝑝! ,𝑝!) ∈ 𝑆𝑀𝐴𝐿𝐿 ∪ 𝐸𝑄𝑈𝐴𝐿 insert pi into CANDIDATES 
For all (𝑝! ,𝑝!) ∈ 𝐿𝐴𝑅𝐺𝐸 insert pi and pj into CANDIDATES 

11. Return (BRIDGE(CANDIDATES, P)). 
 



 9 

2.2.2 Population Dispersion Index 
Population dispersion index, or PDI, describes how clustered the population is at different spatial 
scales [7].  The PDI is the average of the bivariate k-function for each individual in the 
population. The bivariate k-function is defined as expected number of points of pattern 1 within a 
distance s of an arbitrary point of pattern 2, divided by overall point density in pattern 1.  The 
algorithm for calculating the PDI is given below. For ease of reading, the algorithm for the 
bivariate k-function is separated and detailed following the PDI algorithm. The algorithm for 
computing the bivariate k -function is based on Cressie [2] with edge corrections from Lotwick 
and Silverman [4]. 
 

1. Initialize the following: 
a. MCP, the set of ordered points representing the minimum convex polygon for the 

entire population range. 
b. A, the area of the minimum convex polygon defined by the hull. 
c. 𝑆 = [𝑠!, 𝑠!,… , 𝑠!!], a set of distances to calculate the bivariate k-function. 

2. For l = 1:N 
a. 𝑃! = {𝑎𝑙𝑙  𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛  𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠  𝑓𝑜𝑟  𝑎𝑛𝑖𝑚𝑎𝑙  𝑙} 
b. 𝑃! = {𝑎𝑙𝑙  𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛  𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠  𝑓𝑜𝑟  𝑎𝑙𝑙  𝑎𝑛𝑖𝑚𝑎𝑙𝑠  𝑒𝑥𝑐𝑒𝑝𝑡  𝑎𝑛𝑖𝑚𝑎𝑙  𝑙} 
c. 𝑘!, 𝑘!,… , 𝑘!! !

= 𝑏𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑘(𝑃!,𝑃!,𝐴,𝑀𝐶𝑃, 𝑆)  
d. Find mean and variance for each k1,k2, … over l. 

 

2.2.2.1 Algorithm for Bivariate K-function  
 𝑘!, 𝑘!,… , 𝑘!! !

= 𝑏𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑘(𝑃!,𝑃!,𝐴,𝑀𝐶𝑃, 𝑆) 

1. Initialize 
𝐾!"! = 𝐾!",!! ,𝐾!",!! ,…𝐾!",!!

! = 0
𝐾!"! = 𝐾!",!! ,𝐾!",!! ,…𝐾!",!!

! = 0
 

2. For i = 1:length of P1 
a. For j = 1:length of P2 

i. Compute distance between (𝑝!!,𝑝!!) 
ii. If distance is less than any value of s 

1. Compute 𝑤(𝑝!!,𝑝!!) and 𝑤(𝑝!!,𝑝!!), where 𝑤(𝑎, 𝑏) is defined as the 
fraction of the circumference of a circle centered at a and crossing 
b that lies within the minimum convex polygon  

a. For each value of s greater than the distance 

𝐾!",!! → 𝐾!",!! +   
1

𝑤(𝑝!!,𝑝!!)
 

𝐾!",!! → 𝐾!",!! +   
1

𝑤(𝑝!!,𝑝!!)
 

iii. Else, distance is greater than all s values, do nothing as 𝑎 𝑝!!,𝑝!!, 𝑠 = 0 
and 𝑎 𝑝!!,𝑝!!, 𝑠 = 0 

3. 𝐾!!! →    !
!!!!

𝐾!"!  and 𝐾!"! →    !
!!!!

𝐾!"!  
 



 10 

2.2.3 MCI  
The mobility correlation index is a measure of how much the movements of the animals are 
correlated with each other. The MCI assumes that the movements of the animals are described by 
a discrete time based Gaussian position jump process with N individuals and M time steps. A 
global mean shift in the x-direction (𝜇!), mean shift in the y-direction (𝜇!), variance (𝜎!), and 
correlation (𝜌) are assumed for all individuals. The global parameters are found by following the 
process described by Calabrese [1]. The log-likelihood function is given by  
 

ℓ𝓁 = −𝑀𝑇𝑟𝑙𝑜𝑔𝐶! −
1
2 ∆𝑥 𝑡 − 𝝁𝒙 !𝐶!!! ∆𝑥 𝑡 − 𝝁𝒙

!

!!!

+ ∆𝑦 𝑡 − 𝝁𝒚
!𝐶!!! ∆𝑦 𝑡 − 𝝁𝒚  

 
Where Cl(N by N) , 𝜇! (N by 1) and 𝜇! (N by 1) are defined as follows 
 

𝐶! ∶=

𝜎 𝜌
𝜌 𝜎

𝜌 ⋯
𝜌 ⋯

𝜌 𝜌
⋮ ⋮

𝜎 ⋱
⋱ ⋱

,𝝁𝒙 = 𝜇!
1
⋮
1
,𝝁𝒚 = 𝜇!

1
⋮
1

 

 
To find the parameters, the log-likelihood function is maximized. Because the Cl matrix is 
circulant, the Cl matrix can be re-expressed in terms of a uniform eigenvector and eigenvalues 
and the likelihood function maximized with respect to the eigenvalues. There is a closed form 
solution to the eigenvalues that maximize the likelihood function and they are as follows 
 

𝜆!,!"# =
1
2 (𝜙!! ∆𝑥 𝑡 − 𝝁𝒙 )! + (𝜙!! ∆𝑦 𝑡 − 𝝁𝒚 )! ! 

𝜆!,!"# =
1

2(𝑁 − 1) ∆𝑥 𝑡
! 1− 𝜙!𝜙!

! ∆𝑥 𝑡 + ∆𝑦 𝑡 ! 1− 𝜙!𝜙!
! ∆𝑦 𝑡 ! 

 
where 𝜙! =

!
!
[1,1,⋯ ]!. Then, the values of the parameters can be obtained with the following 

relations (where the MCI is equivalent to 𝜌).  
 
 

𝜇! = 𝜙!𝜙!
! ∆𝑥(𝑡) ! 

 

𝜎 =
𝜆! + (𝑁 − 1)𝜆!

𝑁  

𝜌 =
𝜆! − 𝜆!
𝑁  

 

3 Implementation 
The above algorithms will all be implemented using R due to its popularity among biologists and 
ecologists.  The code will be run on a Macbook Pro with a 2.9 GHz Intel Core i7 processor with 
8 GB of RAM.  



 11 

4 Databases 
The agent based model will generate the data for input to the PDI, RMI, and MCI algorithms.  
Additionally, real relocation data from gazelles will be used as input to the PDI, RMI, and MCI 
algorithms. The relocation data will consist of a time series of x and y locations from 36 gazelles 
with GPS collars.  The time series for an individual gazelle ranges from 50 days to 917 days, 
with 8111 data points in total. The time intervals between data points vary from 1 to 25 hours 
and will have gaps from satellite interference or battery saving programs. Some preprocessing of 
this data will likely be necessary to use with the PDI, RMI, and MCI metrics.  

5 Validation 

5.1 Agent Based Model 
The agent based model will be validated in smaller modules as well as overall.   

5.1.1 Landscape Initialization 
The landscape initialization can be validated by computing the number of cells with a resource 
and ensuring it equals R.  The landscape update can be validated by updating the landscape many 
times and summing the number of resources per cell over time.  The cells that were selected to 
be stationary throughout generations should have a resource value equal to the number of 
updates to the landscape, and the other cells should have a resource value that is less than one but 
uniform across all cells that were not selected to be stationary. Visualizing this with a color map 
of the matrix (image.plot function in R) leads to little information about the uniformity of 
the cells not selected to be stationary as the resource value of the stationary cells is much larger 
than the surrounding cells.  Thus, for better visualization, the stationary plots (as determined by 
the landscape generation function) were removed from the following plots.  The lack of pattern 
in the non-stationary cells confirms that the landscape is being generated appropriately.  There is 
a noticeable decrease in resource counts near the edges of the map as well as near the edges of 
the stationary patches.  This is because the boundary conditions of the map are reflective, not 
periodic, so that patches may not be placed such that they hang off the edges of the map.  Thus, 
there are fewer patch placement locations that result in a resource being on the edges of the map.  
A similar pattern occurs around the stationary patches, because to keep the number of resources 
constant, the patches are not allowed to overlap. It should also be noted that due to the definition 
of predictability, with a patch size of 8, there are only two resource patches, which only allows 
for a predictability of 0%, 50%, or 100%, so patch size of 8 is not included in the plots for 25% 
or 75%. The landscape validation plots can be seen in Figure 5 to Figure 9, below. 



 12 

  

  
Figure 5: Landscape Validation for Predictability of 0% 



 13 

  

 

 

Figure 6: Landscape Validation for Predictability of 25% 



 14 

  

  
Figure 7: Landscape Validation for Predictability of 50% 



 15 

  

 

 

Figure 8: Landscape Validation for Predictability of 75% 



 16 

  

  
Figure 9: Landscape Validation for Predictability of 100%. Note that once stationary patches are 
removed, there are no resources elsewhere on the map, giving every cell a value of 0 for resources. 

5.1.2 Agent Movement 
The agent movement can be validated by hand computations of the values of the nodes as well as 
hand comparison of the node values and the resulting movement decisions.  For agent movement 
validation, 3 agents were initialized with specific weights, input values, and previous direction.  
The location and visible resources were varied throughout the test cases. Focus was given to the 
edges of the map in selecting locations.  For each test case, the values of the hidden and output 
nodes were calculated by hand, and then the agent direction selection algorithm was followed. 
For some combinations of node values, location, and resources, the algorithm specifies multiple 
directions from which to randomly select. The agent direction function was called 10,000 times 
for each test case, and a histogram was created from the distribution of directions selected.  The 
histograms confirm that the correct direction was always selected by the agent direction function, 
as well as a uniform distribution between multiple directions if multiple directions were allowed 
for the resulting node values. In the following figures, the location of the agent, previous 



 17 

direction, calculated node values, and an image of the 8-cell neighborhood are given. The x 
represents the agent’s location, the grey shaded cells represent the map does not exist in those 
cells, 0 represents no resource in that cell, and 1 represents a resource is in that cell.  
 
Test	
  Case	
  1	
   	
   	
   	
   	
   	
   	
   	
   	
  

Memory	
  Movement,	
  direction	
  of	
  1,	
  
but	
  unavailable,	
  so	
  randomly	
  select	
  

from	
  directions	
  5,	
  6,	
  7	
  

Row	
   1	
   	
   	
   	
   	
   	
   Node	
  4	
   0.810	
  
Column	
   64	
   	
   0	
   x	
   	
   	
   Node	
  5	
   0.906	
  

Previous	
  Dir	
   2	
   	
   0	
   0	
   	
   	
   Node	
  6	
   0.004	
  

	
  
Figure 10: Agent Movement Validation Test Case 1 

Test	
  Case	
  2	
   	
   	
   	
   	
   	
   	
   	
   	
  

Memory	
  Movement,	
  direction	
  of	
  1	
  
Row	
   64	
   	
   	
  	
   0	
   0	
   	
   Node	
  4	
   0.981	
  

Column	
   1	
   	
   	
  	
   x	
   0	
   	
   Node	
  5	
   0.003	
  
Previous	
  Dir	
   6	
   	
   	
  	
   	
  	
   	
  	
   	
   Node	
  6	
   0.053	
  

	
  
Figure 11: Agent Movement Validation Test Case 2 



 18 

Test	
  Case	
  3	
   	
   	
   	
   	
   	
   	
   	
   	
  
Oriented	
  Movement,	
  3	
  resources	
  

visible,	
  select	
  from	
  1,	
  7,	
  8	
  
Row	
   64	
   	
   1	
   1	
   	
  	
   	
   Node	
  4	
   0.501	
  

Column	
   64	
   	
   1	
   x	
   	
  	
   	
   Node	
  5	
   0.501	
  
Previous	
  Dir	
   4	
   	
   	
  	
   	
  	
   	
  	
   	
   Node	
  6	
   0.490	
  

	
  
Figure 12: Agent Movement Validation Test Case 3 

Test	
  Case	
  4	
   	
   	
   	
   	
   	
   	
   	
   	
  
Oriented	
  Movement,	
  1	
  resources	
  

visible,	
  direction	
  of	
  7	
  
Row	
   64	
   	
   0	
   0	
   	
  	
   	
   Node	
  4	
   0.501	
  

Column	
   64	
   	
   1	
   x	
   	
  	
   	
   Node	
  5	
   0.501	
  
Previous	
  Dir	
   4	
   	
   	
  	
   	
  	
   	
  	
   	
   Node	
  6	
   0.490	
  

	
  
Figure 13: Agent Movement Validation Test Case 4 

Test	
  Case	
  5	
   	
   	
   	
   	
   	
   	
   	
   	
  
Non-­‐Oriented	
  Movement,	
  previous	
  
direction	
  was	
  1,	
  2	
  is	
  unavailable,	
  so	
  

select	
  from	
  1,	
  8	
  

Row	
   2	
   	
   0	
   0	
   	
  	
   	
   Node	
  4	
   0.267	
  
Column	
   64	
   	
   0	
   x	
   	
  	
   	
   Node	
  5	
   0.504	
  

Previous	
  Dir	
   1	
   	
   0	
   0	
   	
  	
   	
   Node	
  6	
   0.048	
  



 19 

	
  
Figure 14: Agent Movement Validation Test Case 5 

Test	
  Case	
  6	
   	
   	
   	
   	
   	
   	
   	
   	
  
Non-­‐Oriented	
  Movement,	
  previous	
  

direction	
  was	
  6,	
  5	
  and	
  6	
  is	
  
unavailable,	
  direction	
  of	
  7	
  

Row	
   64	
   	
   0	
   0	
   0	
   	
   Node	
  4	
   0.269	
  
Column	
   2	
   	
   0	
   x	
   0	
   	
   Node	
  5	
   0.501	
  

Previous	
  Dir	
   6	
   	
   	
  	
   	
  	
   	
  	
   	
   Node	
  6	
   0.047	
  

	
  
Figure 15: Agent Movement Validation Test Case 6 

Test	
  Case	
  7	
   	
   	
   	
   	
   	
   	
   	
   	
  
Non-­‐Oriented	
  Movement,	
  previous	
  

direction	
  was	
  2,	
  1,	
  2,	
  3,	
  4,	
  8	
  
unavailable,	
  so	
  select	
  from	
  5,	
  6,	
  7	
  

Row	
   1	
   	
   	
  	
   	
  	
   	
  	
   	
   Node	
  4	
   0.267	
  
Column	
   64	
   	
   0	
   x	
   	
  	
   	
   Node	
  5	
   0.504	
  

Previous	
  Dir	
   2	
   	
   0	
   0	
   	
  	
   	
   Node	
  6	
   0.048	
  



 20 

	
  
Figure 16: Agent Movement Validation Test Case 7 

Test	
  Case	
  8	
   	
   	
   	
   	
   	
   	
   	
   	
  
Non-­‐Oriented	
  Movement,	
  previous	
  
direction	
  was	
  1,	
  select	
  from	
  1,	
  2,	
  8	
  

Row	
   63	
   	
   0	
   0	
   0	
   	
   Node	
  4	
   0.267	
  
Column	
   63	
   	
   0	
   x	
   0	
   	
   Node	
  5	
   0.484	
  

Previous	
  Dir	
   1	
   	
   0	
   0	
   0	
   	
   Node	
  6	
   0.055	
  

	
  
Figure 17: Agent Movement Validation Test Case 8 

Test	
  Case	
  9	
   	
   	
   	
   	
   	
   	
   	
   	
  
Oriented	
  Movement,	
  1	
  resource	
  

available,	
  direction	
  of	
  1	
  
Row	
   35	
   	
   0	
   1	
   0	
   	
   Node	
  4	
   0.500	
  

Column	
   35	
   	
   0	
   x	
   0	
   	
   Node	
  5	
   0.952	
  
Previous	
  Dir	
   1	
   	
   0	
   0	
   0	
   	
   Node	
  6	
   0.050	
  



 21 

	
  
Figure 18: Agent Movement Validation Test Case 9 

Test	
  Case	
  10	
   	
   	
   	
   	
   	
   	
   	
   	
  
Oriented	
  Movement,	
  3	
  resources	
  
available,	
  randomly	
  select	
  from	
  

direction	
  of	
  1,	
  2,	
  8	
  

Row	
   35	
   	
   1	
   1	
   1	
   	
   Node	
  4	
   0.500	
  
Column	
   35	
   	
   0	
   x	
   0	
   	
   Node	
  5	
   0.952	
  

Previous	
  Dir	
   1	
   	
   0	
   0	
   0	
   	
   Node	
  6	
   0.050	
  

	
  
Figure 19: Agent Movement Validation Test Case 10 

Test	
  Case	
  11	
   	
   	
   	
   	
   	
   	
   	
   	
  
Oriented	
  Movement,	
  5	
  resources	
  
available,	
  randomly	
  select	
  from	
  

direction	
  1,	
  2,	
  4,	
  6,	
  8	
  

Row	
   35	
   	
   1	
   1	
   1	
   	
   Node	
  4	
   0.500	
  
Column	
   35	
   	
   0	
   x	
   0	
   	
   Node	
  5	
   0.952	
  

Previous	
  Dir	
   1	
   	
   1	
   0	
   1	
   	
   Node	
  6	
   0.050	
  



 22 

	
  
Figure 20: Agent Movement Validation Test Case 11 

Test	
  Case	
  12	
   	
   	
   	
   	
   	
   	
   	
   	
  
Oriented	
  Movement,	
  7	
  resources	
  
available,	
  randomly	
  select	
  from	
  

directions	
  1,	
  2,	
  3,	
  4,	
  6,	
  7,	
  8	
  

Row	
   35	
   	
   1	
   1	
   1	
   	
   Node	
  4	
   0.500	
  
Column	
   35	
   	
   1	
   x	
   1	
   	
   Node	
  5	
   0.952	
  

Previous	
  Dir	
   1	
   	
   1	
   0	
   1	
   	
   Node	
  6	
   0.050	
  

	
  
Figure 21: Agent Movement Validation Test Case 12 

5.1.3 Reproduction 
The reproduction can be validated with edge cases.  If the mutation and crossover are set to zero, 
the overall efficiency, defined as the ratio of resources gathered to time steps taken, should have 
a sharp initial increase (where the most efficient agents are copied perfectly) and then be 
relatively constant throughout all generations. As seen in Figure 22, below, this is the case when 
mutation and crossover are both set to zero, with a constant efficiency of 2.5% after about 20 
generations, where the variance is due to random placement of agents. When the crossover is set 



 23 

to 20% and point mutation to 2%, the efficiency is increasing, with an efficiency of about 8% 
after 200 generations. 
 

 

 
Figure 22: Reproduction Validation using edge case (top) compared to model values for mutation 

and crossover (bottom) 



 24 

5.1.4 Overall Stage 1 
The overall model for stage 0 and 1 can be compared to an existing C implementation [5].   

5.1.5 Overall Stage 2 
As stage 2 is only a slight modification of stage 1, stage 2 can be further validated by creating a 
visualization of the agent movement and checking that the agents do not occupy the same cell at 
the same time.   

5.2 Spatial Statistics 
Both the RMI and the PDI can be validated by comparing to a hand calculation of a small set of 
data points. Additionally, the minimum convex polygon can be compared to the results of the R 
function chull, which will compute the minimum convex polygon via a different algorithm, 
but should yield the same result.  The bivariate k-function calculated can be compared to the 
values from the R function k12hat. The MCI can be validated by comparing to an 
implementation in MATLAB. 

6 Testing 

6.1 Run Times 
Using the MATLAB profiler, the self times for each function can be obtained, as shown in 
Figure 23, below.  
 

 
Figure 23: Self time, in seconds, per function 

 
Determining direction takes the most amount of time per generation, but as this function is 
mostly if statements in order to match the agent movement algorithm, it is not likely that the time 
spent in this function can be reproduced. However, other functions, such as 

determineDir
ection, 5.31 

reproduction
, 2.99 @<-, 

1.15 seeMap, 0.89 

match, 0.86 

el, 0.77 

checkAtAssig
nment, 0.68 

elNamed, 
0.52 

.getClassFro
mCache, 0.49 

.Call, 
0.48 

getClass, 
0.36 

.identC, 
0.34 

+, 
0.23 

other, 1.04 

Time	
  (in	
  s)	
  Per	
  Function	
  (1	
  generation)	
  



 25 

checkAtAssignment, elNamed, el, and match, are all internal R functions that are called 
when data elements in user-defined classes are accessed.  It is possible that some of the time 
spent in these functions could be reduced by changing R defaults or no longer using a user-
defined class, which reduce readability of code, but might increase speed.  This will be explored 
in December and January before proceeding to Stage 2.  

6.2 Spatial Metrics 
Testing of the RMI, PDI, and MCI will be done using the gazelle data set and various simulation 
data sets.  Additionally, sets of simulation data will be degraded by removing points based on 
selecting the index of points to be removed from a uniform distribution. The RMI, PDI, and MCI 
will be computed for both the original data set and the degraded data set, to compare 
performance of both metrics when the data is not perfect.  The RMI, PDI, and MCI statistics for 
the combinations of landscape predictably and patch size will be examined to see if these 
statistics are sufficient for determining large-scale population patterns.  If the clustering is not 
obvious from a per-metric basis, a linear classifier could be used. Time permitting, a parallel 
version will be implemented and computation times compared with the non-parallel version.  

7 Project Schedule 
The tentative schedule is described below, given in two-week increments. Currently, the project 
is on schedule and all tasks proposed have been completed.  
 
Week Tasks 
October 21 – November 3 Set up data structures for agents ✓* 

Implement landscape initialization ✓ 
Implement landscape update ✓ 
Implement agent initialization ✓ 

November 4 - November 17 Implement agent direction ✓ 
Validate agent direction ✓ 

November 18 – December 1 Validate landscape initialization ✓ 
Implement reproduction ✓ 
Validate reproduction ✓ 

December 2 – December 16 Connect implementations for full stage 0 + stage 1 ✓ 
Create mid-year report 
Give mid-year presentation ✓ 

January 20 – February 2 Implement Stage 2 
February 3 – February 16 Implement RMI 
February 17 – March 2 Implement PDI 

Implement MCI 
March 3 – March 16 Validate PDI, RMI, and MCI 
March 24 – April 6 Validate Stage 0, Stage 1, Stage 2 
April 7 – April 20 Test RMI and PDI with gazelle data 

Test RMI and PDI with full simulation data 
Test RMI and PDI with degraded simulation data 

April 21 – May 4 Write final report and create final presentation 
May 5 – May 19 Complete final report and presentation 

Give final presentation, submit final report 



 26 

Time permitting: parallel implementation of agent based model and/or spatial metrics and 
visualization of simulation. 

8 Milestones 
Milestones will coincide with the bolded elements in the project schedule. 

9 Deliverables 
Deliverables for this project are 

1. Proposal presentation 
2. Proposal document 
3. Code for agent based model 
4. Code for RMI, PDI, MCI 
5. Data sets created by simulation (degraded and full) 
6. Gazelle data sets 
7. Mid-year report 
8. Final report 
9. Final presentation 

10 Bibliography 
1. Calabrese, Justin, Chris H. Fleming, Bill F. Fagan, Marin Rimmler, Petra Kaczensky, 

Peter Leimgruber, and Thomas Mueller. From the fish tank to the Gobi desert: A general, 
scalable approach to quantifying animal movement coordination. (Unpublished, 2013) 

2. Cressie, Noel A. Statistics for spatial data. New York: Wiley, 1993 
3. Kirkpatrick, David G., and Raimund Seidel. "The ultimate planar convex hull 

algorithm?." SIAM journal on computing 15.1 (1986): 287-299. 
4. Lotwick, H. W., and B. W. Silverman. "Methods for analysing spatial processes of 

several types of points." Journal of the Royal Statistical Society. Series B 
(Methodological) (1982): 406-413. 

5. Mueller, Thomas, William F. Fagan, and Volker Grimm. "Integrating individual search 
and navigation behaviors in mechanistic movement models."Theoretical Ecology 4.3 
(2011): 341-355. 

6. Mueller, Thomas, and William F. Fagan. "Search and navigation in dynamic 
environments–from individual behaviors to population distributions." Oikos117.5 (2008): 
654-664. 

7. Mueller, Thomas, et al. "How landscape dynamics link individual-to population-level 
movement patterns: a multispecies comparison of ungulate relocation data." Global 
Ecology and Biogeography 20.5 (2011): 683-694. 

 


